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Abstract—This paper outlines the formulation of a robust fault
detection and isolation scheme that can precisely detect and
isolate simultaneous actuator and sensor faults for uncertain
linear stochastic systems. The given robust fault detection scheme
based on the discontinuous robust observer approach would be
able to distinguish between model uncertainties and actuator
failures and therefore eliminate the problem of false alarms.
Since the proposed approach involves precise reconstruction of
sensor faults, it can also be used for sensor fault identification
and the reconstruction of true outputs from faulty sensor outputs.
Simulation results presented here validate the effectiveness of the
robust fault detection and isolation system.

I. I NTRODUCTION

Faults are deviations from the normal behavior of the plant or
its instrumentation and they can be categorized into: i) additive
process faults, ii) multiplicative process faults, iii) sensor faults, and
iv) actuator faults. There exist several fault monitoring procedures
which can be used to recognize and distinguish different types of
faults [1]. These fault monitoring procedures can be categorized
into: i) fault detection, ii) fault isolation, and iii) fault identification.
A survey on design methods for fault detection is given in [2].
Most of the existing FDI (fault detection and isolation) schemes
are based on measurement residual generation. Generated residual
is used to facilitate the decision making procedures involved in FDI.
The basic difference between most FDI schemes is the underlying
residual generation methods. Few examples of different FDIschemes
are the observer based Fault Detection Filters [3]–[5], Kalman filter
based Proportional Integral Observers [6], Multiple ModelAdaptive
Estimators [7], and system identification methods [8].

In this manuscript two types of faults are of concern, i.e., actuator
faults and sensor faults. The FDI scheme considered here is the
observer based approach. Discontinuous observers such as the sliding
mode observers have been successfully used in FDI context [9].
Design of sliding mode observers for detection and reconstruction of
actuator and sensor faults is presented in [10] and [11], respectively.
The precise reconstruction of faults proposed in [10] assumes the
absence of uncertainty. The FDI approaches presented in [11] and
[12] introduce an approximate fault reconstruction schemeby mini-
mizing the error between the true fault signal and the reconstructed
fault signal. In [13], an FDI scheme for a class of nonlinear uncertain
systems is presented by introducing limitations on the structure of the
uncertainty. It is important to notice that the precise reconstruction
of fault is generally not available in the presence of uncertainty.
While the FDI schemes presented in [10]–[13] involves reconstruction
of faults, sliding mode observer based FDI approach presented in
[14] is based on the measurement residual generation. Though the
FDI scheme presented in [14] assumes precise knowledge of system
dynamics, a similar FDI scheme which is robust to mismatched
uncertainties is presented in [15]. The residual generation presented in
[14] and [15] is based on the sliding mode observer scheme where the
observer maintain the sliding motion in the presence of mismatched
uncertainties, but when fault occurs, the sliding motion isbroken and
a residual is generated which contains information regarding the fault.
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Though there are numerous literatures on fault detection and
identification, very little work is done on developing robust fault
detection schemes. Robust actuator/sensor fault detection is a chal-
lenging problem due to system modeling errors, external disturbances,
and measurement noise. Most of the current fault detection algorithms
are model based and they tent to induce false alarms when the plant
dynamics differ from the assumed model. This manuscript presents
a robust FDI scheme that canprecisely detect and isolate simul-
taneously occurring actuator faults and sensor faults for uncertain
linear stochastic systems. The proposed approach is an observer based
FDI scheme where a discontinuous observer is used for residual
generation. The main highlights of the proposed FDI scheme are

• Multiple actuator and sensor faults are considered
• Proposed technique involves reconstruction of sensor faults and

therefore this approach can be used for sensor fault identification
and reconstruction of true outputs

• There are no constraints on system uncertainties, both matched
and mismatched uncertainties are considered

• Present scheme can be easily extended to nonlinear systems by
considering Lipschitz continuous affine nonlinear terms with
known Lipschitz constant [13], [15]

The structure of this paper is as follows. A detailed formulation of
the observer based FDI scheme is first given. Afterwards, theresults
from numerical simulations and the concluding remarks are given in
sections III and IV, respectively.

II. OBSERVER-BASED FAULT DETECTION FILTER

Let (Ω,F , {Ft}t≥t0 , P) denotes a complete filtered probability
space. Consider annth-order stochastic system of the following form:

Ẋ1(t) = A11X1(t) + A12X2(t) + W1(t)

Ẋ2(t) = A21X1(t) + A22X2(t) + Bu(t) + W2(t)

Y1(t) = C11X1(t) + C12X2(t) + V1(t)

Y2(t) = C21X1(t) + C22X2(t) + ye(t) + V2(t)

(1)

whereW1(t) andW2(t) denote stochastic disturbances andV1(t)
and V2(t) indicate measurement noises. The state vectors,X1(t)
and X2(t), are of dimensions,X1(t) ∈ ℜn−r and X2(t) ∈ ℜr,
respectively. The true state matrices,A11 ∈ ℜ(n−r)×(n−r), A12 ∈
ℜ(n−r)×r, A21 ∈ ℜr×(n−r), A22 ∈ ℜr×r, and the control distribu-
tion matrixB ∈ ℜr×r, are assumed to be unknown. The desired input
signal is denoted asud(t) and ue(t) indicates the error in applied
control,u(t), due to actuator faults, i.e.,

u(t) = ud(t) + ue(t) (2)

The stochastic measurement vectors,Y1(t) and Y2(t), are of di-
mensions,Y1(t) ∈ ℜm1 andY2(t) ∈ ℜm2 , respectively. The output
matrices,C11, C12, C21 andC22, are assumed to be known. The mea-
surement noise,

[
VT

1 (t) VT
2 (t)

]T
= V(t) ∈ ℜm, is assumed to be

zero-mean Gaussian white noise process, i.e.,V(t) ∼ N
(
0, Rδ(τ )

)
.

The vector,ye(t), indicates sensor failures and is modeled as

ẏe(t) = f(ye(t), t), ye(t0) = 0 (3)

where f(·) is an unknown operator. Stochastic external disturbance[
WT

1 (t) WT
2 (t)

]T
= W(t) ∈ ℜn is modeled as a linear system

driven by a Gaussian white noise process, i.e.,

Ẇ(t) = L(W(t), t) + W(t), W(t0) = 0 (4)



whereL(·) is an unknown linear operator andW (t) ∈ ℜn, is a zero-
mean Gaussian white noise process, i.e.,W (t) ∼ N

(
0,Qδ(τ )

)
.

Assumption 1. Assume the sensor faults are not instantaneous and
therefore there exist a known conservative upper bound onf(ye(t), t)
such that

|f(ye(t), t)| ≤ σ(t), ∀t ≥ t0

where| · | denotes the Euclidean norm.

The external disturbance,W(t), is mean square bounded [16],
[17], i.e.,

sup
t≥t0

E
[
W(t)WT (t)

]
≤ K

whereK is a constant matrix whose elements are finite. The assumed
(known) model of the plant in (1) is given as

ẋm1
(t) = Am11

xm1
(t) + Am12

xm2
(t)

ẋm2
(t) = Am21

xm1
(t) + Am22

xm2
(t) + Bmud(t)

(5)

Define the model-error vectorsD1(t) ∈ ℜn−r andD2(t) ∈ ℜr as

D1(t) = ∆A11X1(t) + ∆A12X2(t) + W1(t)

D2(t) = ∆A21X1(t) + ∆A22X2(t) + ∆Bud(t) + W2(t)
(6)

where ∆A11 = A11 − Am11
, ∆A12 = A12 − Am12

, ∆A21 =
A21 − Am21

, ∆A22 = A22 − Am22
, and∆B = B − Bm.

Assumption 2. Given the system parameter uncertainties are
bounded and the system states are bounded in mean square sense,
an upper bound on the model error vectorD(t) can be obtained as

P (|D(t)| ≤ µ̄(t)) = 1, ∀t ≥ t0

That is, |D(t)| is almost surely (a.s.) upper bounded byµ̄(t) for all
t ≥ t0.

Now the plant dynamics in (1) can be written in-terms of known
parameters as

Ẋ1(t) = Am11
X1(t) + Am12

X2(t) + D1(t)

Ẋ2(t) = Am21
X1(t) + Am22

X2(t) + Bmud(t) + D2(t) + Bue(t)

Re-parameterizeX2(t) as

X2(t) = αX2α (t) + βX2β
(t) (7)

whereX2α(t) ∈ ℜr, X2β
(t) ∈ ℜr, α andβ are user selected scalar

parameters. NowẊ2(t) can be written asẊ2(t) = αẊ2α (t) +
βẊ2β

(t). SelectẊ2α(t) andẊ2β
(t) as

Ẋ2α (t) =
1

α
Am21

X1(t) + Am22
X2α(t) +

1

α
D2(t)

Ẋ2β
(t) = Am22

X2β
(t) +

1

β
Bmud(t) +

1

β
Bue(t)

(8)

Remark1. One of the main challenges in the design of observer
based FDI scheme is the presence of coupled system uncertainties and
actuator faults [15]. In the presence of coupled system uncertainties
and actuator faults, it is difficult to design an observer that yields
measurement residual which is only sensitive to the actuator faults.
Notice that the re-parametrization ofX2(t) given in (7) allows
decoupling of system uncertainties and actuator faults as shown in
(8).

Assumption 3. Assume there exists a bounded vectorζ(t) ∈ ℜr

such thatBue(t) = Bmζ(t), i.e.,

ζ(t) = B
−1
m Bue(t) and |ζ(t)| ≤ ξ(t), ∀t ≥ t0

After appending the sensor error dynamics given in (3), the
extended system can be written as




Ẋ1(t)

Ẋ2α (t)

Ẋ2β
(t)

ẏe(t)


 =




Am11
αAm12

βAm12
0

1
α

Am21
Am22

0 0
0 0 Am22

0
0 0 0 Aye







X1(t)
X2α(t)
X2β

(t)
ye(t)




+




0
0

1
β
Bm

0


 ud(t) +




I 0 0 0
0 1

α
I 0 0

0 0 1
β
Bm 0

0 0 0 I







D1(t)
D2(t)
ζ(t)
h(·)




whereh(·) = f(·) − Ayeye andAye ∈ ℜm2×m2 is a user selected
Hurwitz matrix. LetZ(t) =

[
XT

1 (t) XT
2α

(t) XT
2β

(t) yT
e (t)

]T
,

now the above extended system can be rewritten as

Ż(t) = FZ(t) + G3ud(t) + G1D1(t) + G2D2(t) + G3ζ(t)

+ G4h(·)
(9)

whereF =




Am11
αAm12

βAm12
0

1
α

Am21
Am22

0 0
0 0 Am22

0
0 0 0 Aye


 and

G ,
[
G1 G2 G3 G4

]
=




I 0 0 0
0 1

α
I 0 0

0 0 1
β
Bm 0

0 0 0 I




Let H =

[
C11 αC12 βC12 0
C21 αC22 βC22 I

]
, the measurement equations can

be rewritten asY(t) = HZ(t) + V(t). Now the system in (1) can
be written as the following dynamically equivalent form

Ż(t) = FZ(t) + G3ud(t) + G1D1(t) + G2D2(t)

+ G3ζ(t) + G4h(·)

Y(t) = HZ(t) + V(t)

(10)

Remark2. Even though the above representation of the plant is a non-
minimal realization, the observability of the extended system may be
obtained by making appropriate changes to the state matrix,F , and
the corresponding changes toD1(t), D2(t), andh(·).

Consider the following partition ofG1 asn − r column vectors,
G2 as r column vectors,G3 as r column vectors, andG4 as m2

column vectors as shown below

G1 =
[
g11 g12 . . . g1(n−r)

]

G2 =
[
g21 g22 . . . g2r

]

G3 =
[
g31 g32 . . . g3r

]

G4 =
[
g41 g42 . . . g4m2

]

Also consider the individual elements of the vectorsζ(t), D(t), and
h(·), i.e.,

ζ(t) =




ζ1(t)
...

ζr(t)


 , D(t) =



D1(t)

...
Dn(t)


 and h(·) =




h1(·)
...

hm2
(·)




Now the extended system in (9) can be written in summation form
as

Ż(t) =FZ(t) +

n−r∑

i=1

g1iDi(t) +
r∑

j=1

g2jDn−r+j(t)

+

r∑

k=1

g3kζk(t) +

m2∑

l=1

g4lhl(·) + G3ud(t)

(11)



Define G1 ,
[
G1 G2

]
, G2 ,

[
G3 G4

]
, and ηT (t) ,[

ζT (t) hT (·)
]T

. Now (11) may be rewritten as

Ż(t) = FZ(t) + G3ud(t) +

n∑

i=1

G1iDi(t) +

r+m2∑

j=1

G2jηj(t) (12)

where G1k and G2k are the kth column vectors ofG1 and G2

matrices, respectively. Nowℓ = 1, 2, . . . , r + 1 observers of the
following from are considered

If ℓ ≤ r

˙̂
Z

ℓ

(t) = F Ẑ
ℓ(t) + L

ℓ
[
Y(t) − HẐ

ℓ(t)
]

+ G3ud(t)+

n∑

i=1

G1iµ
ℓ
i(t) +

ℓ−1∑

j=1

G2jν
ℓ
j (t) +

r+m2∑

j=ℓ+1

G2jν
ℓ
j (t)

(13)

If ℓ = r + 1

˙̂
Z

ℓ

(t) = F Ẑ
ℓ(t) + L

ℓ
[
Y(t) − HẐ

ℓ(t)
]

+ G3ud(t)+

n∑

i=1

G1iµ
ℓ
i(t) +

r+m2∑

j=1

G2jν
ℓ
j(t)

(14)

where Lℓ ∈ ℜ(n+r+m2)×m is the observer gain correspond-
ing to the ℓth observer. The observer inputs are denoted as,[
νℓ
1(t) . . . νℓ

(r+m2)(t)
]T

, νℓ(t) ∈ ℜr+m2 , and

[
µℓ

1(t) . . . µℓ
n(t)

]T
, µ

ℓ(t) ∈ ℜn
, ∀ℓ = 1, 2, . . . , r + 1

Equations (13) and (14) correspond to the typical observer model.
The observer gainLℓ and the observer inputsµℓ(t) and νℓ(t)
corresponding to theℓth observer are selected so that the generated
residual obtained from observers given in (13) is asymptotically stable
if there is no fault in theℓth actuator and the residual obtained from
the observer given in (14) is asymptotically stable despiteany actuator
or sensor fault occurrences.

Define the observer error as̃Zℓ(t) = Z(t) − Ẑℓ(t). After
subtracting (14) from (11), the observer error dynamics canbe written
as

˙̃
Z

ℓ

(t) =
[
F − L

ℓ
H

]
Z̃

ℓ(t) − L
ℓ
V(t)+

n∑

i=1

G1i

[
Di(t) − µ

ℓ
i(t)

]
+

r+m2∑

j=1

G2j

[
ηj(t) − ν

ℓ
j(t)

] (15)

It is important to note that the solution to the stochastic differential
equation given in (15) cannot be based on the ordinary mean square
calculus because the integral involved in the solution depends on
V(t), which is of unbounded variation, i.e.,E

[
V(t)VT (t + τ )

]
=

Rδ(τ ). For the treatment of this class of problems, the stochastic
differential equation can be rewritten in Itô form as [18], [19]

dZ̃
ℓ(t) =

{ [
F − L

ℓ
H

]
Z̃

ℓ(t) +
n∑

i=1

G1i

[
Di(t) − µ

ℓ
i(t)

]
+

r+m2∑

j=1

G2j

[
ηj(t) − ν

ℓ
j(t)

] }
dt − L

ℓ
dB(t)

(16)

where the zero-mean Gaussian white noiseV(t) is written as the
increments of stationary Wiener process with zero-mean andthe
correlation of increments

E
[
{B(τ ) − B(ζ)} {B(τ ) − B(ζ)}T

]
= R|τ − ζ|

Details on stochastic It̂o calculus can be found in [19]. The observer
error corresponding to theℓth observer,̃Zℓ(t), is a stochastic process

and therefore the stability of the observer error dynamics given in (16)
is depicted either as moment stability or stability in probabilistic
sense. The stability in probabilistic sense is usually known asalmost
sure (a.s.) stability and it is defined as follows [16]:

Definition 1. The stochastic process̃Zℓ(t) is asymptotically stable
with probability 1, or almost surely asymptotically stable, if

P
(
Z̃

ℓ(t) → 0 as t → ∞
)

= 1 (17)

Notice that the almost sure stability of the observer error is
impossible due to the persistently acting measurement noise B(t).
Therefore it is desirable for the observer error corresponding to the
ℓth observer,̃Zℓ(t), to have a dynamics that follows

dZ̃
ℓ
m(t) =

{ [
F − L

ℓ
H

]
Z̃

ℓ
m(t)

}
dt + L

ℓ
dB(t) (18)

Let Z̃
ℓ
(t) = Z̃ℓ(t) − Z̃ℓ

m(t), now subtracting (18) from (16) yields

dZ̃
ℓ
(t) =

{ [
F − L

ℓ
H

]
Z̃

ℓ
(t) +

n∑

i=1

G1i

[
Di(t) − µ

ℓ
i(t)

]

+

r+m2∑

j=1

G2j

[
ηj(t) − ν

ℓ
j(t)

] }
dt

(19)

Given next is an approach for the selection of the observer gain Lℓ

and the observer inputsµℓ(t) and νℓ(t) corresponding to theℓth

observer based on the stochastic Lyapunov approach.
Since the only information regarding the true observer error is in

the form of measurement residual, one do not have full accessto the
signal Z̃

ℓ
(t), i.e., one only has access tõY

ℓ
(t) = HZ̃

ℓ
(t). Based

on (19),dỸ
ℓ
(t) can be written as

dỸ
ℓ
(t) =

{
H

[
F − L

ℓ
H

]
Z̃

ℓ
(t)+

n∑

i=1

HG1i

[
Di(t) − µ

ℓ
i(t)

]
+

r+m2∑

j=1

HG2j

[
ηj(t) − ν

ℓ
j(t)

] }
dt

Based on Assumptions 1 and 3, define an upper bound onη(t) as

|η(t)| ≤ ν̄(t), ∀t ≥ t0

Theorem 1. Given the Assumptions 1, 2, and 3, the individual fault
detection filters given in Eq.(13) guarantee almost sure asymptotic
stability of Ỹ

ℓ
(t) if there is no fault occurrence in theℓth actuator

and the fault detection filter given in Eq.(14) guarantees almost
sure asymptotic stability of̃Y

r+1
(t) despite any actuator or sensor

fault occurrences, if the observer gainLℓ corresponding to theℓth

observer is selected so that the following matrix Lyapunov inequality
is satisfied

[
F − L

ℓ
H

]T

H
T
HP

ℓ
H

T
H+

H
T
HP

ℓ
H

T
H

[
F − L

ℓ
H

]
+ Q

ℓ ≤ 0
(20)

and the observer inputs corresponding to theℓth observer are selected
as

µ
ℓ
i(t) = sgn

{(
Ỹ

ℓ
(t)

)T

HP
ℓ
H

T
HG1i

}
µ̄(t),

∀i = 1, . . . , n

(21)

ν
ℓ
j(t) = sgn

{(
Ỹ

ℓ
(t)

)T

HP
ℓ
H

T
HG2i

}
ν̄(t),

∀j = 1, . . . , r + m2

(22)



where P ℓ ∈ ℜ(n+r+m2)×(n+r+m2) and Qℓ ∈
ℜ(n+r+m2)×(n+r+m2) are positive definite symmetric matrices and
sgn{·} denotes the signum function or the sign function.

Proof: Construct a Lyapunov function candidate of the form

V (Ỹ
ℓ
(t)) =

(
Ỹ

ℓ
(t)

)T

HP ℓHT Ỹ
ℓ
(t). Now using the Itô for-

mula [19], dV (Ỹ
ℓ
(t)) can be calculated as

dV (Ỹ
ℓ
(t)) =

{ (
Ỹ

ℓ
(t)

)T
{ [

F − L
ℓ
H

]T

H
T
HP

ℓ
H

T
H+

H
T
HP

ℓ
H

T
H

[
F − L

ℓ
H

] }
Ỹ

ℓ
(t)

+ 2
(
Ỹ

ℓ
(t)

)T

HP
ℓ
H

T
H

n∑

i=1

G1i

[
Di(t) − µ

ℓ
i(t)

]

+ 2
(
Ỹ

ℓ
(t)

)T

HP
ℓ
H

T
H

r+m2∑

j=1

G2j

[
ηj(t) − ν

ℓ
j (t)

] }
dt

After substituting (20),LV (ỹℓ) can be written as

LV (ỹℓ) ≤ −
(
ỹ

ℓ(t)
)T

Q
ℓ
ỹ

ℓ(t)

+ 2
n∑

i=1

(
ỹ

ℓ(t)
)T

HP
ℓ
H

T
HG1i

[
Di(t) − µ

ℓ
i(t)

]

+ 2

r+m2∑

j=1

(
ỹ

ℓ(t)
)T

HP
ℓ
H

T
HG2j

[
ηj(t) − ν

ℓ
j (t)

]

where the operatorL{·} acting onV (x, t) is defined as

LV (x, t) = lim
dt→0

1

dt
E

[
dV (X(t), t)|X(t) = x

]
(23)

Substituting (21) and (22) yields

LV (ỹℓ) ≤ −
(
ỹ

ℓ(t)
)T

Q
ℓ
ỹ

ℓ(t)+

2
n∑

i=1

{ (
ỹ

ℓ(t)
)T

HP
ℓ
H

T
HG1iDi(t)−

|
(
ỹ

ℓ(t)
)T

HP
ℓ
H

T
HG1i|µ̄(t)

}
+

2

r+m2∑

j=1

{ (
ỹ

ℓ(t)
)T

HP
ℓ
H

T
HG2jηj(t)−

|
(
ỹ

ℓ(t)
)T

HP
ℓ
H

T
HG2j |ν̄(t)

}

Thus

LV (ỹℓ(t)) ≤ −
(
ỹ

ℓ(t)
)T

Q
ℓ
ỹ

ℓ(t) (24)

Therefore theℓ = (r + 1)th observer in (14) is almost surely asymp-
totically stable despite the occurrence of any actuator or sensor faults.
Based on the given proof one could easily make the argument that if
there is no fault occurrence in theℓth actuator, where1 ≤ ℓ ≤ r, then
the ℓth observer given in (13) is almost surely asymptotically stable.
Thus any observed residualỹ

ℓ(t), will indicate a fault occurrence in
the ℓth actuator.

Any observed residual in theℓth observer given in (13), where
1 ≤ ℓ ≤ r, indicates a fault occurrence in theℓth actuator. Based on
the observability condition one could easily show that the estimated
or the observer generated sensor error terms,ŷe(t), asymptotically
approaches the true sensor error,ye(t). Thereforeŷe(t) obtained

from the observer given in (14) can be directly used for sensor fault
detection. That is, if̂ye(t) = 0, then there is no sensor fault and
if ŷei

(t) 6= 0, then the nonzerôyei
(t) indicates a fault occurrence

in the ith sensor. Moreover, by subtractinĝye(t) from the measured
output yields the true system output.

III. N UMERICAL SIMULATIONS

Numerical simulation results are presented in this sectionto
validate the efficiency of the proposed FDI scheme. Considera
stochastic system of the form given in (1) where the true system
matrices are given as

A11 =

[
0 0
0 0

]
, A12 =

[
1 0
0 1

]
, A21 =

[
−1.3 0.01
−0.12 −1.8

]
,

A22 =

[
−0.9 −0.011
0.3 −3.4

]
, B =

[
2.4 −0.23

−0.11 1.5

]

and the assumed system matrices are

Am11
=

[
0 0
0 0

]
, Am12

=

[
1 0
0 1

]
, Bm =

[
3.19 −0.31
−0.1 2.01

]

Am21
=

[
−1.13 0

0 −1.18

]
, Am22

=

[
−0.99 0

0 −2.98

]

The system output matrices are given asC11 =[
I2×2 02×2

]T
, C12 =

[
02×2 I2×2

]T
, C21 =[

0.95 1.7
−2.4 1.54

]
, C22 =

[
0.43 −2.31
1.3 0.43

]
. For simulation

purposes, the external disturbance is modeled asW1 = 0

andW2(t) = [W21(t) W22(t)]
T is given as

W21(t) = −W21(t) + W1(t)

W22(t) = −W22(t) + W2(t)

where[W1(t) W2(t)]
T = W (t) is zero-mean Gaussian white noise

process with

E
[
W(t)WT (t + τ )

]
= 10−2 × I2×2δ(τ )

The measurement noise,V(t) , V(t) ∈ R
6, is assumed to be zero-

mean Gaussian white noise process with

E
[
V(t)VT (t + τ )

]
= 10−2 × I6×6δ(τ )

Note thatD1 = 0 andD2(t) is given as

D2(t) = ∆A21X1(t) + ∆A22X2(t) + ∆Bud(t) + W2(t)

where the desired control inputud(t) is given in Fig. 1. For the
re-parametrization of the system states, the constantsα and β are
selected asα = β = 1. Note that the two possible sensors faults are
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Fig. 1. Desired Control Input

associated with the fifth and sixth outputs. Two fault scenarios are
considered here and the details on the fault scenarios are



1) Fault Scenario I: For the first fault scenario, the faults are
associated with the second actuator and the fifth output sensor.
The actuator fault occurs at thirty seconds (sec) and the sensor
fault occurs at sixty-five sec. Given in Fig. 2 are theue(t) and
ye(t) corresponding to the first fault scenario.

2) Fault Scenario II: For the second fault scenario considered, it
is assumed that the faults are associated with the first actuator,
the fifth and the sixth output sensors. The fault associated
with the first actuator occurs at thirty sec. The fifth and sixth
output sensor faults occur at sixty-five sec and eighty-five
sec, respectively. Given in Fig. 3 are theue(t) and ye(t)
corresponding to the second fault scenario.
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Fig. 2. Fault Scenario I
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(a) Actuator Faults
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(b) Sensor Faults

Fig. 3. Fault Scenario II

Note that for the system considered here, there are two actuators
and therefore three different observers are designed. For both fault
scenarios considered,Ay is selected asAy = 02×2, P ℓ is selected
asP ℓ = 10−2 × I , ∀ℓ ∈ {1, 2, 3}. The observer gain is calculated
asL1 = L2 = L3 =




49.9299 −0.2986 −0.2402 0.7390 −2.5331 −0.3157

0.3753 49.8876 −0.3033 −0.2856 0.7403 −1.7170

0.1847 0.0195 24.9291 −0.3715 1.0916 −0.7319

−0.3075 0.3204 0.5508 24.6784 1.2925 1.9531

0.1847 0.0195 24.9291 −0.3715 1.0916 −0.7319

−0.3075 0.3204 0.5508 24.6784 1.2925 1.9531

−47.3614 −85.1196 −21.7003 115.5758 49.6501 −0.7843

120.0819 −76.9340 −64.9756 −21.7627 0.8362 49.8110




The extended output matrixH and the matrixG can be calculated
as

H =

[
C11 C12 C12 04×2

C21 C22 C22 I2×2

]
, G =




02×2 02×2 02×2

I2×2 02×2 02×2

02×2 Bm 02×2

02×2 02×2 I2×2




Details on the results obtained for both fault scenarios aregiven next.
1) Fault Scenario I:Given in Fig. 4 are the true error vectors,

D2(t) = ∆A21X1(t) + ∆A22X2(t) + ∆Bud(t) + W2(t), ζ(t) =
B−1

m Bue(t), andh(·) = f(·) corresponding to the first fault scenario.

For simulation purposes the upper bounds onD2(t), ζ(t), andh(·)
are selected as

|D21
(t)| ≤ 10 |D22

(t)| ≤ 20
|ζ1(t)| ≤ 4 |ζ2(t)| ≤ 3
|h1(t)| ≤ 2 |h2(t)| ≤ 2
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(c) Output Error Rates

Fig. 4. Fault Scenario I: Error Vectors
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(a) Residual
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(b) Estimated Sensor Faults

Fig. 5. Fault Scenario I: Observer Residual and Estimated Sensor Faults

Given in Fig. 5 are the generated residual and the estimated sensor
errors corresponding to the first fault scenario. Figure 5(a) contains
the measurement residual generated for observer one and two. The
first two kinks in the residual are due to the start of input application
that occurs around five seconds and the leveling-off the input to its
steady state value around twenty seconds. Notice the jump inobserver
two residual around thirty seconds due to the fault occurrence in
the second actuator. Figure 5(b) contains the estimated sensor errors
obtained from the third observer. Note that the estimated sensor error
is similar to the true sensor error given in Fig. 2(b).

2) Fault Scenario II: Given in Fig. 6 are the error vectors,
D2(t), ζ(t), and h(·) corresponding to the second fault scenario.
The upper bounds on error vectors used here are the same upper
bounds used for the first fault scenario.

Given in Fig. 7 are the generated residual and the estimated sensor
errors corresponding to the second fault scenario. Figure 7(a) contains
the measurement residual generated for observer one and two. Notice
the sudden increase in observer one residual around thirty seconds
due to the fault occurrence in the first actuator. Figure 7(b)contains
the estimated sensor errors obtained from the third observer. Note
that the estimated sensor errors are similar to the true sensor errors
given in Fig. 3(b).
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Fig. 6. Fault Scenario II: Error Vectors
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(b) Estimated Sensor Faults

Fig. 7. Fault Scenario II: Observer Residual and Estimated Sensor Faults

IV. CONCLUSION

Robust actuator/sensor fault detection is a challenging problem due
to the effects of modeling errors, system process noise, andmea-
surement noise. This manuscript outlines the formulation of a robust
fault detection and isolation scheme that can precisely detect and
isolate simultaneously occurring actuator faults and sensor faults for
uncertain linear stochastic systems. The given robust fault detection
scheme would be able to distinguish between model uncertainties
and actuator failure and therefore eliminate the problem offalse
alarms. The presented approach involves precise reconstruction of
sensor faults and therefore this approach can be used for sensor fault
identification and the reconstruction of true outputs from faulty sensor
outputs. The proposed approach is an observer based fault detection
and isolation scheme where a discontinuous observer is usedfor
residual generation.

The proposed approach assume conservative upper bounds on the
system uncertainties, the actuator faults, and the sensor fault rates.
A bank of discontinuous observers is designed for fault detection
and isolation scheme where the number of observers is based on
the number of actuators. The observer gain and the discontinuous
observer inputs are selected so that the observed residual is almost
surely asymptotically stable if there is no actuator fault occurrence.
As a result, any observed residual would indicate a fault occurrence
in the corresponding actuator. In addition to the bank of observers
designed for actuator fault detection, a robust discontinuous observer
is designed so that the estimated or the observer generated sensor
error terms asymptotically approaches the true sensor error. There-
fore, the sensor error estimates obtained from the robust observer

can be directly used for sensor fault detection, isolation and identi-
fication. Moreover, by subtracting the estimated sensor errors from
the measured outputs, true system outputs can be generated.The
simulation results reveal clear indication of actuator faults despite the
presence of matched system uncertainties and external disturbances.
Moreover, the estimated sensor errors are identical to the true sensor
error regardless of the measurement noise present.
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1-5.


